

EXPERIMENT 2.1

NAME- SECTION/GROUP -

UID- SEMESTER – 1^{ST}

SUBJECT -DISRUPTIVE TECHNOLOGIES SUBJECT CODE -

BRANCH - CSE

Aim :

Develop a prediction model based on linear regression.

Tool Used:

Google Collab

Basic Concept/ Command Description:

Pycaret is a bundle of many Machine Learning algorithms. Only three lines of code is required to compare 20 ML models.

Pycaret is available for:

Classification Regression Clustering

Code and Observations, Simulation Screenshots and Discussions:

```
[4] !pip install pycaret &> /dev/null print("Pycaret installed successfully!")
```

Pycaret installed successfully!
Install Pycaret
#Get the version

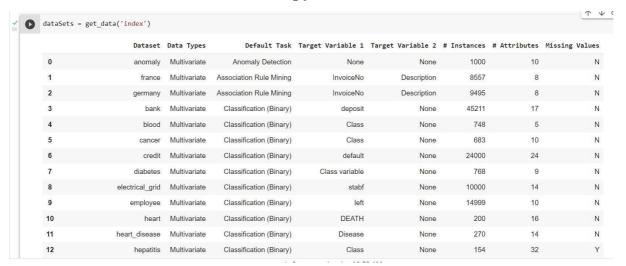
from pycaret.utils import version
version()

[→ '2.3.5'

#Loading dataset from Pycaret

[6] from pycaret.datasets import get_data

#Get the list of datasets available in pycaret



#Get boston dataset

#Get the shape of Boston Dataset

[7] bostonDataSet.shape
(506, 14)

#CREATE ENVIRONMENT SETUP

[11] from pycaret.regression import * #create environment setup

#INITIALIZATION OF SETUP

}	Description	Value
0	session_id	6616
1	Target	medv
2	Original Data	(506, 14)
3	Missing Values	False
4	Numeric Features	11
5	Categorical Features	2
6	Ordinal Features	False
7	High Cardinality Features	False
8	High Cardinality Method	None
9	Transformed Train Set	(354, 21)
10	Transformed Test Set	(152, 21)
11	Shuffle Train-Test	True
12	Stratify Train-Test	False
13	Fold Generator	KFold
14	Fold Number	10

#Compare Model

[14] cm=compare_models()

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	2.1229	10.7628	3.1342	0.8610	0.1355	0.1053	0.449
gbr	Gradient Boosting Regressor	2.1692	11.6619	3.2899	0.8407	0.1448	0.1099	0.104
lightgbm	Light Gradient Boosting Machine	2.3620	12.3738	3.4325	0.8285	0.1454	0.1145	0.078
rf	Random Forest Regressor	2.3592	14.5993	3.6644	0.8087	0.1561	0.1181	0.538
ada	AdaBoost Regressor	2.7228	16.0411	3.8793	0.7899	0.1715	0.1409	0.105
Ir	Linear Regression	3.2717	21.0186	4.5431	0.7098	0.2174	0.1588	0.318
ridge	Ridge Regression	3.2493	21.0439	4.5467	0.7096	0.2207	0.1578	0.015
br	Bayesian Ridge	3.2226	21.2267	4.5664	0.7069	0.2222	0.1565	0.018
en	Elastic Net	3.5074	25.7807	5.0053	0.6555	0.2247	0.1642	0.017
lasso	Lasso Regression	3.5446	26.2378	5.0442	0.6514	0.2275	0.1664	0.017
huber	Huber Regressor	3.7149	29.2137	5.2580	0.6251	0.2775	0.1785	0.051
omp	Orthogonal Matching Pursuit	3.8469	27.9578	5.2256	0.6240	0.3077	0.1991	0.015
dt	Decision Tree Regressor	3.2754	33.3368	5.5594	0.5658	0.2263	0.1722	0.021
knn	K Neighbors Regressor	4.5338	43.6502	6.4799	0.4166	0.2464	0.2053	0.066
lar	Least Angle Regression	4.1666	41.6927	5.6998	0.3233	0.2892	0.1981	0.018

#Build a single model Random Forest

[16] rfmodel = create_model('rf')

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	2.5150	10.3462	3.2165	0.8679	0.1507	0.1209
1	2.7944	15.7432	3.9678	0.8017	0.2074	0.1588
2	2.0890	6.6850	2.5855	0.7323	0.1347	0.1045
3	2.7392	25.8642	5.0857	0.6580	0.1814	0.1422
4	2.3411	18.0320	4.2464	0.7405	0.1630	0.1226
5	1.4134	4.1827	2.0452	0.9482	0.0890	0.0654
6	2.6111	19.8139	4.4513	0.8344	0.1889	0.1340
7	2.8459	15.0071	3.8739	0.8247	0.1742	0.1388
8	1.5753	4.2832	2.0696	0.9192	0.1103	0.0889
9	2.6676	26.0354	5.1025	0.7598	0.1609	0.1046
Mean	2.3592	14.5993	3.6644	0.8087	0.1561	0.1181
SD	0.4833	7.7057	1.0822	0.0847	0.0344	0.0264

#Save Model

```
[17] sm=save_model(rfmodel,'rmodelfile')
```

Transformation Pipeline and Model Successfully Saved

#Load Model

```
[18] rfmodel=load_model('rmodelfile')
```

	c	im	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medy	
0	0.006		18.0	2.31		0.538			4.0900	1	296		396.90	4.98	24.0	
1	0.02	31	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6	
2	0.02	29	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	
3	0.032	37	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	
4	0.069	05	0.0	2.18	0	0.458	7.147	E4 2	0.0000	3	222	18.7	396.90	5.33	36.2	
L 1		cti	ons=pr	redict_						3	222	10.7	396.90	5.33	30.2	
L 1	wpredi	cti	ons=pr	V	nodel(taset)			ptratio				Labe
L 1	ewpred:	cti cti	ons=pr ons	redict_u	nodel(rfmode]	l,data=	newda age	taset)				black			Labe: 25.719000
ne	ewpredi c	ctic ctic	ons=pr ons zn	redict_n	nodel(chas	rfmode] nox	l,data= rm	newda age	taset) dis	rad	tax 296	ptratio	black	lstat	medv	
0 1	ewpredi c	ctic ctic im 32	ons=prons zn 18.0	indus	nodel(chas	rfmode] nox 0.538	rm 6.575 6.421	age 65.2 78.9	dis 4.0900	rad	tax 296 242	ptratio 15.3	black 396.90	1stat 4.98	medv 24.0	25.71900
0 1	0.000 0.022	im 32 31	ons=prons zn 18.0 0.0	indus 2.31 7.07	chas	nox 0.538 0.469	rm 6.575 6.421	age 65.2 78.9	dis 4.0900 4.9671	rad 1 2	tax 296 242	ptratio 15.3 17.8	black 396.90 396.90	1stat 4.98 9.14	medv 24.0 21.6	25.71900 22.38900

#Plotting the comparison of actual and predicted model

- [] import matplotlib.pyplot as plt
- predicted=newpredictions.iloc[:,-1]
 actual=newpredictions.iloc[:,-2]
 plt.scatter(actual,predicted)
 plt.xlabel('predicted')
 plt.ylabel('actual')
 plt.title('actual Vs predicted')
 plt.savefig("result.jpg", dpi=300)
 plt.show()

MODEL

